文章插图
曲线拟合【曲线拟合】实际工作中 , 变数间未必都有线性关係 , 如服药后血药浓度与时间的关係;疾病疗效与疗程长短的关係;毒物剂量与致死率的关係等常呈曲线关係 。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据 , 并用拟合的曲线方程分析两变数间的关係 。
基本介绍中文名:曲线拟合
外文名:curve-fitting
曲线拟合:一种数据处理方法
定义:用解析表达式逼近离散数据的方法
常用函式:指数函式、对数函式等
曲线直线化:是曲线拟合的重要手段之一
简介用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函式关係的一种数据处理方法 。用解析表达式逼近离散数据的一种方法 。在科学实验或社会活动中 , 通过实验或观测得到量x与y的一组数据对(xi , yi)(i=1 , 2 , …m) , 其中各xi是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式 , y=f(x , c)来反映量x与y之间的依赖关係 , 即在一定意义下“最佳”地逼近或拟合已知数据 。f(x , c)常称作拟合模型 , 式中c=(c1 , c2 , …cn)是一些待定参数 。当c在f中线性出现时 , 称为线性模型 , 否则称为非线性模型 。有许多衡量拟合优度的标準 , 最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点的残差(或离差)ek=yk-f(xk , c)的加权平方和达到最小 , 此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线 。有许多求解拟合曲线的成功方法 , 对于线性模型一般通过建立和求解方程组来确定参数 , 从而求得拟合曲线 。至于非线性模型 , 则要藉助求解非线性方程组或用最最佳化方法求得所需参数才能得到拟合曲线 , 有时称之为非线性最小二乘拟合 。
文章插图
曲线拟合
文章插图
曲线拟合公式推导曲线拟合:贝塞尔曲线与路径转化时的误差 。值越大 , 误差越大;值越小 , 越精确 。意义曲线直线化是曲线拟合的重要手段之一 。对于某些非线性的资料可以通过简单的变数变换使之直线化 , 这样就可以按最小二乘法原理求出变换后变数的直线方程 , 在实际工作中常利用此直线方程绘製资料的标準工作曲线 , 同时根据需要可将此直线方程还原为曲线方程 , 实现对资料的曲线拟合 。常用函式指数函式指数函式(exponential function)的标準式形式为
文章插图
文章插图
对上式两边取自然对数 , 得
文章插图
b>0时 , Y随X增大而增大;b<0时 , Y随X增大而减少 。当以lnY和X绘製的散点图呈直线趋势时 , 可考虑採用指数函式来描述Y与X间的非线性关係 , lna和b分别为截距和斜率 。更一般的指数函式
文章插图
式中k为一常量 , 往往未知, 套用时可试用不同的值 。对数函式对数函式(lograrithmic function)的标準式形式为
- 一尘不到意思 一尘不到解释
- 天灵灵地灵灵是什么意思 天灵灵地灵灵的意思
- 公螃蟹和母螃蟹哪个贵 公螃蟹和母螃蟹哪种的贵
- 电脑连不上网络怎么设置 电脑连不上网络设置方法
- 牛肉和绿豆可以一起吃吗 牛肉和绿豆能一起吃吗
- 糯米粉吃了会发胖吗 糯米粉吃了会不会发胖
- 浮影古镜
- 音乐术语 练习曲
- 珍珠丸
- 经济法与电子商务法