数学美


数学美

文章插图
数学美【数学美】数学是理性思维和想像的结合,它的发展建立于社会的需求,所以就有了数学美 。主要有:统一性、对称性、简单性 。
基本介绍书名:高等数学
作者:傅延欣,韩伟,王德,王维立
ISBN:9787121095979
类别:数学
定价:28.00
出版社:电子工业出版社
出版时间:2009年
开本:16
简介数学是理性思维和想像的结合,是研究数量、结构、变化以及空间模型等概念的一门学科 。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生 。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理 。它的发展建立于社会的需求,所以就有了数学美 。主要有:统一性、对称性、简单性 。数学人性它的发展建立于社会的需求,所以就有了数学美 。数学历来以其高度的抽象性、严密的逻辑性被人们所赏识,却很少有人把它与美学联繫起来,数学起源于建筑,正是对美的追求,才产生了数学 。似乎数学与美学毫不相干 。其实,这是对数学本质的一种误解,是对数学与美学的关係以及数学中的美缺乏真正的了解和认识,数学以一种独特的方式来诠释美学 。古今演变古今中外许多着名的数学家都曾以其亲身感受对这个问题有过深刻的论述,认为数学不仅与美学密切相关,而且数学中充满着美的因素,到处闪现着美的光辉 。早在二千年多前,古希腊哲学家、数学家毕达哥拉斯就极度讚赏整数的和谐美,圆和球体的对称美,称宇宙是数的和谐体系 。第五世纪着名数学评论家普洛克拉斯进而断言:“那里有数,那里就有美” 。近现代许多着名的数学家对数学中的美更是讚叹不已 。英国着名数理逻辑学家罗素指出:“数学,如果正常地看它,不但拥有真理,而且也具有至高的美,正如雕塑的美,是一种冷而严肃的美 。”英国着名数学家哈代认为,不美的数学在世界上是找不到永久容身之地的 。美国数学家、控制论的创始人维纳则说:数学实质上是艺术的一种 。
数学美

文章插图
我国着名数学家华罗庚教授说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美 。”数学家徐利治教授指出:“数学园地处处开放着美丽花朵,它是一片灿烂夺目的花果园,这片段预告果园正是按照美的追求开拓出来的 。”数学中的美是千姿百态、丰富多彩的,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等 。从内容来说,数学美可分为结构美、语言美与方法美;就形式而论,数学美可分为外在的形态美和内在的理性美 。把内容和形式结合起来考察,数学美的特徵主要有两个:一个是和谐性,一个是奇异性 。和谐性和谐性是美的最基本、最普遍的一个特徵,任何美的东西无一不给人以和谐之感 。和谐性的表现形式很多,就数学而言,其典型表现有以下几种形式 。
数学美

文章插图
统一性统一性反映的是审美对象在形式或内容上的某种共同性、关联性或一致性,它能给人一种整体和谐的美感 。数学对象的统一性通常表现为数学概念、规律、方法的统一,数学理论的统一,数学和其它科学的统一 。(1) 数学概念、规律、方法的统一 。一切客观事物都是相互联繫的,因而,作为反映客观事物的数学概念、数学定理、数学公式、数学法则也是互相联繫的,在一定条件下可处于一个统一体之中 。例如,运算、变换、函式分别是代数、几何、分析这三个数学分支中的重要概念,在集合论中,便可统一于映射的概念 。又如代数中的算术平均——几何平均定理、加权平均定理、幂平均定理、加权幂平均定理等着名不等式,都可以统一于一元凹、凸函式的琴森不等式 。在数学方法上,同样渗透着统一性的美 。例如,从结构上分析,解析法、三角法、複数法、向量法和图解等具体方法,都可以统一于数形结合法 。数学中的公理化方法,使零散的数学知识用逻辑的链条串联起来,形成完整的知识体系,在本质上体现了部分和整体之间的和谐统一 。(2)数学理论的统一 。在数学发现的历史过程中,一直存在着分化和整体化两种趋势 。数学理论的统一性主要表现在它的整体性趋势 。欧几里德的《几何原本》,把一些空间性质简化为点、线、面、体几个抽象概念和五条公设及五条公理,并由此导致出一套雅致的演绎理论体系,显示出高度的统一性 。布尔基学派的《数学原本》,用结构的思想和语言来重新整理各个数学分支,在本质上揭示数学的内在联繫,使之成为一个有机整体,在数学的高度统一性上给人一美的启迪 。(3)数学和其它科学的统一 。数学和其它科学的相互渗透,导致了科学数学化 。正如马克思所说的,一门科学只有当它成功的运用数学时,才算达到了真正完善的地步 。力学的数学化使牛顿建立了经典力学体系 。科学的数学化使物理学与数学趋于统一 。建立在相对论和量子论两大基础理论上的物理学,其各个分支都离不开数学方法的套用,它们的理论表述也採用了数学的形式 。化学的数学化加速了化学这门实验性很强的学科向理论科学和精确科学过渡 。生物数学化使生物学日益摆脱对生命过程进行现象描述的阶段,从定性研究转向定量研究,这个数学化的方向,必将同物理学、化学的数学化方向一样,把人类对生命世界的认识提高到一个崭新的水平 。不仅自然科学普遍数学化了,而且数学方法也进入了经济学、法学、人口学、人种学、史学、考古学、语言学等社会科学领域,日益显示出它的效用 。数学进入经济学领域最大的成就是本世纪出现的计量经济学 。数学进入语言学领域,使语言学研究经历了统计语言学、代数语言学和算法语言学三个阶段 。数学向文学的渗透,发现了数学的抽象推理和符号运算同文学的形象思维之间有着奇妙的联繫 。对称性对称性是和谐性的一种特殊的表现 。它反映的是审美对象形态或结构的均衡性、匀称性或变化的周期性、节律性 。在现实世界中,形式上和内容上的对称性,广泛地存在于客观事物之中,既有轴对称、中心对称、平面对称等的空间对称,又有周期、节奏和旋律的时间对称,还有与时空坐标无关的更为複杂的对称 。数学的对称美,实质上是自然物的和谐性在量和量的关係上最直观的表现 。从数学美来讲,对称包括狭义对称、常义对称与泛对称等,内容十分丰富 。狭义对称可分为代数对称(共轭根式、共轭複数、对称多项式、轮换对称多项式、线性方程组的克莱姆法则、对称矩阵、反对称矩阵、厄米特矩阵、反厄米特矩阵等)与几何对称(轴对称、中心对称、平面对称等),常义对称包括同构、同态、映射、反演、互补、互逆、相似、全等等,泛对称包括数学对象的系统性、守恆性、不变性、周期性、对偶性、等价性和匀称等 。简单性简单、明快才能给人以和谐之感,繁杂晦涩就谈不上和谐一致 。因此,简单性既是和谐性的一种表现,又是和谐性的基础 。数学美的简单性,并非指数学对象本身简单、浅显,而是指数学对象由儘可能少的要素通过儘可能简捷、经济的方式组成,并且蕴含着丰富和深刻的内容 。数学的简单美,主要表现在数学的逻辑结构、数学的方法和表达形式的简单性 。