文章插图
鲁棒性【鲁棒性】鲁棒是Robust的音译 , 也就是健壮和强壮的意思 。它是在异常和危险情况下系统生存的关键 。比如说 , 计算机软体在输入错误、磁碟故障、网路过载或有意攻击情况下 , 能否不当机、不崩溃 , 就是该软体的鲁棒性 。所谓“鲁棒性” , 是指控制系统在一定(结构 , 大小)的参数摄动下 , 维持其它某些性能的特性 。根据对性能的不同定义 , 可分为稳定鲁棒性和性能鲁棒性 。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器 。
基本介绍中文名:鲁棒
外文名:Robust
意义:健壮和强壮
套用领域:计算机软体输入错误
详细介绍溯源和背景鲁棒性/抗变换性(英文:robustness)原是统计学中的一个专门术语 , 20世纪70年代初开始在控制理论的研究中流行起来 , 用以表征控制系统对特性或参数扰动的不敏感性 。鑒于中文“鲁棒性”的词义不易被理解 , “robustness”又被翻译成了语义更加易懂的“抗变换性” , “抗变换性”和“鲁棒性”在译文中经常互相通用 。
文章插图
通信网路的鲁棒性在实际问题中 , 系统特性或参数的摄动常常是不可避免的 。产生摄动的原因主要有两个方面 , 一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值) , 另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移 。因此 , 鲁棒性已成为控制理论中的一个重要的研究课题 , 也是一切类型的控制系统的设计中所必须考虑的一个基本问题 。对鲁棒性的研究主要限于线性定常控制系统 , 所涉及的领域包括稳定性、无静差性、适应控制等 。原理鲁棒性问题与控制系统的相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联繫 , 内模原理(把外部作用信号的动力学模型植入控制器来构成高精度反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用 。当系统中存在模型摄动或随机干扰等不确定性因素时能保持其满意功能品质的控制理论和方法称为鲁棒控制 。早期的鲁棒控制主要研究单迴路系统频率特性的某些特徵 , 或基于小摄动分析上的灵敏度问题 。现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计的理论和方法 。控制系统的一个鲁棒性是指控制系统在某种类型的扰动作用下 , 包括自身模型的扰动下 , 系统某个性能指标保持不变的能力 , 即抗干扰能力较强 。对于实际工程系统 , 人们最关心的问题是一个控制系统当其模型参数发生大幅度变化或其结构发生变化时能否仍保持渐近稳定 , 这叫稳定鲁棒性 。进而还要求在模型扰动下系统的品质指标仍然保持在某个许可範围内 , 这称为品质鲁棒性 。鲁棒性理论致力于研究多变数系统具有稳定鲁棒性和品质鲁棒性的各种条件 。它的进一步发展和套用 , 将是控制系统最终能否成功套用于实践的关键 。在数字水印技术中 , 鲁棒性是指在经过常规信号处理操作后能够检测出水印的能力;针对图像的常规操作包括空间滤波、有损压缩、列印与複印、几何变形等;鲁棒控制鲁棒性(robustness)就是系统的健壮性 。它是在异常和危险情况下系统生存的关键 。比如说 , 计算机软体在输入错误、磁碟故障、网路过载或有意攻击情况下 , 能否不当机、不崩溃 , 就是该软体的鲁棒性 。所谓“鲁棒性” , 是指控制系统在一定(结构 , 大小)的参数摄动下 , 维持某些性能的特性 。根据对性能的不同定义 , 可分为稳定鲁棒性和性能鲁棒性 。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器 。鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法 。鲁棒性一般定义为在实际环境中为保证安全要求控制系统最小必须满足的要求 。一旦设计好这个控制器 , 它的参数不能改变而且控制性能保证 。鲁棒控制方法 , 是对时间域或频率域来说 , 一般假设过程动态特性的信息和它的变化範围 。一些算法不需要精确的过程模型但需要一些离线辨识 。一般鲁棒控制系统的设计是以一些最差的情况为基础 , 因此一般系统并不工作在最优状态 。鲁棒控制方法适用于稳定性和可靠性作为首要目标的套用 , 同时过程的动态特性已知且不确定因素的变化範围可以预估 。飞机和空间飞行器的控制是这类系统的例子 。过程控制套用中 , 某些控制系统也可以用鲁棒控制方法设计 , 特别是对那些比较关键且(1)不确定因素变化範围大;(2)稳定裕度小的对象 。但是 , 鲁棒控制系统的设计要由高级专家完成 。一旦设计成功 , 就不需太多的人工干预 。另一方面 , 如果要升级或作重大调整 , 系统就要重新设计 。通常 , 系统的分析方法和控制器的设计大多是基于数学模型而建立的 , 而且 , 各类方法已经趋于成熟和完善 。然而 , 系统总是存在这样或那样的不确定性 。在系统建模时 , 有时只考虑了工作点附近的情况 , 造成了数学模型的人为简化;另一方面 , 执行部件与控制元件存在製造容差 , 系统运行过程也存在老化、磨损以及环境和运行条件恶化等现象 , 使得大多数系统存在结构或者参数的不确定性 。这样 , 用精确数学模型对系统的分析结果或设计出来的控制器常常不满足工程要求 。近些年来 , 人们展开了对不确定系统鲁棒控制问题的研究 , 并取得了一系列研究成果 。Hoo鲁棒控制理论和μ分析理论则是当前控制工程中最活跃的研究领域之一 , 多年来一直备受控制研究工作者的青睐 。作者通过系统地研究线性不确定系统、时间滞后系统、区间系统、离散时间系统的鲁棒稳定性问题 , 提出了有关係统鲁棒稳定性的分析和设计方法 。渐近稳定以渐近稳定为性能指标的一类鲁棒性 。如果控制系统在其特性或参数的标称值处是渐近稳定的 , 并且对标称值的一个邻域内的每一种情况它也是渐近稳定的 , 则称此系统是结构渐近稳定的 。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外 , 还必须满足另外一些附加的条件 。这些条件称为结构渐近稳定性条件 , 可用代数的或几何的语言来表述 , 但都具有比较複杂的形式 。结构渐近稳定性的一个常用的度量是稳定裕量 , 包括增益裕量和相角裕量 , 它们分别代表控制系统为渐近稳定的前提下其频率回响在增益和相角上所留有的储备 。一个控制系统的稳定裕量越大 , 其特性或参数的允许摄动範围一般也越大 , 因此它的鲁棒性也越好 。业已证明 , 线性二次型(LQ)最优控制系统具有十分良好的鲁棒性 , 其相角裕量至少为60° , 并确保1/2到∞的增益裕量 。已经成为软体性能指标之一 。无静差性以準确地跟蹤外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性 。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节 , 即系统输出对参考输入的稳态跟蹤误差等于零) , 并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的 , 那幺称此控制系统是结构无静差的 。使系统实现结构无静差的控制器通常称为鲁棒调节器 。用方程
- 塞内尔·厄兹拜拉克利
- 1+1轻巧夺冠最佳化训练:1年级语文
- 薪酬:巨观微观与趋势
- 马一涵演唱歌曲 因为有爱
- 你能赚大钱
- 北京千万电信诈欺案
- Flash CS5 动画设计案例教程
- 新编实用英语读写教程2
- 手机软体 木易
- 李斯碑