拉普拉斯定理【拉普拉斯定理】设在独立试验序列中,事件A在各次试验中发生的机率为p(0<p<1),随机变数η^n表示事件A在n次试验中发生的次数 。
公式则有:
文章插图
其中z为任意实数,q=1-p.证:设随机变数ξ^i表示事件A在第i次试验中发生的次数(i=1,2,…,n,…),则ξ^i服从“0-1”分布,且有:
文章插图
直接由列维定理就得此定理 。近似公式在上述定理条件下,当n充分大时,η^n落在m1与m2之间的机率
文章插图
注:此定理实际上说明了当n充分大时,二项分布B(n,p)逼近常态分配N(np,npq),这是因为η^n是服从二项分布B(n,p)的 。套用例子例 某批产品的次品率为0.005,试求不多于70件的机率P 。解 设ξ表示在任意抽取的10000件产品中的次品数,则ξ服从二项分布B(10000,0.005) 。此时若直接计算机率
文章插图
这是较困难的 。我们利用近似公式来计算,则已知n=10000,p=0.005,q=0.995,np=50,
文章插图
,故
文章插图
模拟试验独立同分布的n个随机变数之和的分布,当n越来越大时,逐渐接近常态分配,即两密度曲线越来越接近 。我们用指数分布来试试看
文章插图
- 帮安吉拉刮鬍子
- 安德华拉诺特
- 虎跳峡站
- 成都香格里拉中心办公楼
- 拉菲亚
- 美国2014年肯尼思·布拉纳执导的电影 一触即发
- 伊拉斯姆斯经济学院
- 孙尚香加贝拉
- 伊拉斯姆斯法学院的简称 ESL
- 布拉德·佩顿执导电影 正当防卫