豆斌林

豆斌林豆斌林,男,1971年6月出生,陕西凤翔人,博士,教授,博士生导师 。2001年6月获华东理工大学工学博士学位 。2001年10月起分别在上海交通大学、韩国KAIST、加拿大University of New Brunswick、美国University of Mississippi、韩国Yonsei University和英国University of leeds大学进行能源高效转化、清洁利用与污染物排放控制领域的研究工作,参加的国内外重要研究课题包括我国“973”子课题研究、韩国科技部和英国EPRSC项目,2008年获上海市技术发明三等奖(排名第二),2009年7月起为大连理工大学教授 。发表论文60余篇,其中SCI收录26篇,申请发明专利10项 。
【豆斌林】现任上海理工大学化工过程机械研究所所长 。
基本介绍中文名:豆斌林
国籍:中国
出生日期:1971年6月
毕业院校:武汉科技大学
籍贯:陕西凤翔
学历及工作经历1990.9~1998.5 武汉科技大学化学工程专业 获学士与硕士学位1998.9~2001.6 华东理工大学化学工艺专业 获博士学位2001.10~2002.9 上海交通大学动力工程与工程热物理 博士后流动站2002.10~2003.10 韩国科学技术院KAIST机械宇航工程分部 博士后2003.11~2004.5 加拿大University of New Brunswick化学工程系 博士后2004.6~2004.8 美国University of Mississippi化学工程系 访问学者2004.10~2006.7 上海电力学院环境工程系 副教授2006.8~2007.12 韩国Yonsei University能源/环境中心2008.1~2009.7 英国University of Leeds能源所ERRI2009.9~ 大连理工大学能动学院 教授2010.7~ 大连理工大学能动学院 教授、博导研究领域煤热解\气化与高温净化子课题,IGCC煤气化污染物高温净化,国家973基础研究子课题G1999022104,参加多功能高温煤气净化研究,国家自然科学基金59776017,参加 纳米孔道粘土内嵌氧化物深度脱除HCl和硷金属蒸气污染物的研究,教育部留学回国启动基金,负责超声处理负载多元氧化物的纳米孔粘土选择性脱除汞蒸气的研究,上海市科委,负责 层状硅酸盐纳米孔内嵌多元氧化物的可控制备及环境套用,上海市教委,负责 大型燃煤锅炉烟气脱硫关键技术研究,上海市重大科技专项,07DZ12013,负责 城市固体废弃物热解气化燃烧处置,韩国科技部,参加生物质制氢,英国EPRSC,Supergen,参加移动床连续催化吸附强化重整制氢新体系,教育部新世纪优秀人才项目,负责生物柴油副产甘油重整CO2原位吸附强化低温制氢研究,辽宁省首批十百千高端人才引进工程启动项目,负责循环流化床粉煤气化,山东万丰煤化工有限公司,负责新一代纯氧燃烧循环流化床生物质锅炉,江苏四方锅炉有限公司,负责生物柴油副产物甘油连续催化吸附强化重整制氢机理研究,国家自然科学基金51276032,负责硕博研究方向可再生能源转化制氢及过程强化 传统能源高效转化与清洁利用 烟气脱硫、脱硝、脱除CO2及重金属污染物的排放控制出版着作和论文[1] Dou B. L., Wang C., Chen H. S., Song Y. C., et al. Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: A Review. Chemical Engineering Research and Design, 2012.90,1901-1917.[2] Xu Y. J., Zang G. Y., Chen H. S., Dou B. L., Tan C.Q. Co-production system of hydrogen and electricity based on coal partial gasification with CO2 capture, International Journal of Hydrogen Energy, 2012, 37, 11805-11814.[3] Ruan X. K., Song Y. C., Liang H. F., Yang M. J., Dou B. L. Numerical Simulation of the Gas Production Behavior of Hydrate Dissociation by Depressurization in Hydrate-Bearing Porous Medium. Energy Fuels, 2012. 26, 1681-1694.[4] Chen H. S., Dou B. L., Song Y. C., Xu Y. J., et al., Studies on absorption and regeneration for CO2 capture by aqueous ammonia, International Journal of Greenhouse Gas Control,2012,6:171-178.[5] Chen H. S., Dou B. L., Song Y. C., Xu Y. J., et al., Pyrolysis characteristics of sucrose biomass in a tubing reactor and a thermogravimetric system, Fuel,2012,95:425-430.[6] Chen H. S., Dou B. L. Enhanced hydrogen production from the glycerol steam reforming process through CO2 removal, In: Hydrogen Production: Prospects and Processes, Eds. D.R. Honnery and P. Moriarty, Nova Science Publishers, 2011, pp223-246.[7] Dou B. L., Chen H. S., Song Y. C., Tan C. T. Synthesis and characterization of heterostructured nanohybrid of MgO-TiO2-Al2O3/montmorillonite. Mater. Chem. Phys., 2011, 130, 63-66[8] Zhao Y. C, Song, Y. C. Liu Y., Liang H. F., Dou B. L. Visualization and Measurement of CO2 Flooding in Porous Media Using MRI. Ind. Eng. Chem. Res., 2011, 50 (8), 4707-4715.[9] Dou B. L.; Dupont V.; Pan W. G.; Chen B. B. Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite, Chemical Engineering Journal, 2011, 166, 631-638. [10] Dou B.L. Chen H.S. Removal of toxic mercury(II) from aquatic solutions by synthesized TiO2 nanoparticles. Desalination, 2011, 269, 260-265.[11] Chen H.S., Ding Y.L., Cong N.T., Dou B.L., Dupont V., Ghadiri M., Williams PT. Progress in low temperature hydrogen production with simultaneous CO2 abatement. Chemical Engineering Research and Design, 2011, 89, 1774-1782.[12] Chen H.S., Ding Y.L., Cong N.T., Dou B.L, Dupont V., Ghadiri M, Williams PT. A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renewable Energy, 2011, 36, 779-788.[13] Dou B.L. Song Y.C. Liu Y.G.., High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor, Journal of Hazardous Materials, 2010, 183, 759-765.[14] Dou B.L. Song Y.C., A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidised-bed reactor. International Journal of Hydrogen Energy, 2010, 35, 10271-10284.[15] Dou B. L., Rickett G., Dupont V., Williams P. T., Chen H. S., Ding Y., Ghadiri M. Steam reforming of crude glycerol with in-situ CO2 sorption. Bioresource Technology, 2010, 101, 2436-2442. [16] Dou B. L., Dupont V., Rickett G., Blakeman N., Williams P. T., Chen H. S., Ding Y., Ghadiri M. Hydrogen production by sorption-enhanced steam reforming of glycerol. Bioresource Technology, 2009. 100, 3540-3547. [17] Dou B. L., Dupont V., Williams P. T., Chen H. S., Ding Y. Thermogravimetic kinetics of crude glycerol. Bioresource Technology, 2009, 100: 2613-2620. [18] Chen H. S., Zhang T. F., Dou B. L., Dupont V., Williams P. T., Ghadiri M, Ding Y. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 2009, 34: 7208-7222. [19].Dou B. L.; Pan W. G.; Jin Q.; Wang W. H.; Li Y., Study on SO2 removal efficiency for wet Flue Gas Desulfurization. Energy Conversion and Management, 2009, 50, 2547-2553. [20]. Chen H.; Ge H.H.; Dou B. L.; Pan W. G.; Zhou G. D. Thermogravimetric Kinetics of MgSO3?6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization, Energy & Fuels, 2009, 23(5), 2552–2556. [21].Dou, B. L.; Byun, Y.-C.; Hwang, J. Flue Gas Desulfurization with an Electrostatic Spraying Absorber. Energy & Fuels; 2008; 22(2); 1041-1045. [22] Dou B. L., Dupont V., Williams P. T. Computational fluid dynamics simulation of gas-solid flow during steam reforming of glycerol in a fluidised bed reactor. Energy & Fuels, 2008, 22: 4102–4108. [23].Dou, B. L.; Pan, W. G.; Ren, J. X.; Chen, B. B. Removal of Tar Component over Cracking Catalysts from High Temperature Fuel Gas. Energy Conversion and Management, 2008, 49, 2247-2253. [24] Dou, B.L; Dupont, V.; Williams, P. T. Modeling of gas-solid flow and hydrogen production from steam reforming of glycerol in a fluidized bed reactor. Prep. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2008, 53 (2), 628-629. [25].Dou, B. L.; Lim, S.; Kang, P.; Hwang, J.; Song, S.; Yu, T.-U.; Yoon, K.-D. Kinetic Study in Modeling Pyrolysis of Refuse Plastic Fuel. Energy & Fuels; 2007; 21(3); 1442-1447. [26].Dou, B. L.; Park, S.; Lim, S.; Yu, T.; Hwang, J. Pyrolysis Characteristics of Refuse Derived Fuel in a Pilot-Scale Unit. Energy & Fuels; 2007; 21(6); 3730-3734. [27].Dou, B. L.; Pan, W. G.; Ren, J. X,; Chen, B B.. Single and Combined Removal of HCl and Alkali Metal Vapor from High-temperature Gas by Solid Sorbents. Energy & Fuels; 2007; 21(2); 1019-1023. [28] Dou B. L.; Chen B. B.; Gao J. S.; Sha X. Z., HCl removal and chlorine distribution of sorbent in a fixed-bed reactor, Energy & Fuels, 2006,20:959-963. [29] Dou B. L.; Chen B. B.; Gao J. S.; Sha X. Z., Reaction of solid sorbents with hydrogen chloride gas at high temperature in a fixed-bed reactor, Energy & Fuels, 2005,19:2229-2234. [30] Dou B. L.; Shen W. Q.; Gao J. S.; et al, Adsorption of alkali metal vapor from high-temperature coal-derived gas by solid sorbents, Fuel Processing Technology, 2003, 82, 51-60. [31] Dou B. L.; Gao J. S.; Sha X. Z.; Baek S. W., Catalytic cracking of tar component from high temperature fuel gas, Applied Thermal Engineering, 2003, 23: 2229-2239. [32] Dou B. L.; Gao J. S.; Baek S. W.; Sha X. Z., High temperature HCl removal with sorbents in a fixed-bed reactor, Energy & Fuels, 2003, 17: 874-878. [33] Yin B., Zhang M.C. Dou B.L. Song Y.B. and Wu J. Discrete Particle Simulation and Visualized Research of the Gas?Solid Flow in an Internally Circulating Fluidized Bed. Ind. Eng. Chem. Res., 2003, 42 (1), 214–221. [34] Dou B. L.; Zhang M. C.; Gao J. S.; Sha X. Z., High-temperature removal of NH3, organic sulfur, HCl and tar component from coal-derived gas, Ind Eng Chem Res, 2002, 41:4195-4200. [35] Dou B. L.; Gao J. S.; Sha X. Z., Study on the reaction kinetics of HCl removal from a high-temperature coal gas, Fuel Processing Technology, 2001, 72:23-33.