文章插图
核密度估计【核密度估计】核密度估计(kernel density estimation)是在机率论中用来估计未知的密度函式,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window) 。Ruppert和Cline基于数据集密度函式聚类算法提出修订的核密度估计方法 。
基本介绍中文名:核密度估计
外文名:kernel density estimation
提出者:Rosenblatt 、Emanuel Parzen
别称:Parzen窗
简介核密度估计在估计边界区域的时候会出现边界效应 。在单变数核密度估计的基础上,可以建立风险价值的预测模型 。通过对核密度估计变异係数的加权处理,可以建立不同的风险价值的预测模型 。由给定样本点集合求解随机变数的分布密度函式问题是机率统计学的基本问题之一 。解决这一问题的方法包括参数估计和非参数估计 。参数估计又可分为参数回归分析和参数判别分析 。在参数回归分析中,人们假定数据分布符合某种特定的性态,如线性、可化线性或指数性态等,然后在目标函式族中寻找特定的解,即确定回归模型中的未知参数 。在参数判别分析中,人们需要假定作为判别依据的、随机取值的数据样本在各个可能的类别中都服从特定的分布 。经验和理论说明,参数模型的这种基本假定与实际的物理模型之间常常存在较大的差距,这些方法并非总能取得令人满意的结果 。由于上述缺陷,Rosenblatt和Parzen提出了非参数估计方法,即核密度估计方法 。由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特徵的方法,因而,在统计学理论和套用领域均受到高度的重视 。
文章插图
图1.一些比较常用的核函式均匀核函式 k(x)=1/2,-1≤x≤1 加入频宽h后: kh(x)=1/(2h),-h≤x≤h三角核函式 k(x)=1-|x|,-1≤x≤1 加入频宽h后: kh(x)=(h-|x|)/h2,-h≤x≤h伽马核函式 kxi(x)=(xα-1e-xα/xi)/[(xi/α)α.Γ(α)]高斯核函式K(x,xc)=exp[-||x-xc||2/(2*σ)2],其中xc为核函式中心,σ为函式的宽度参数 。
- 相控阵雷达天线的核心是什么单元
- 基本建设工程建设单位会计核算实务
- 核陀螺仪
- 先进实验超导托卡马克 全超导托卡马克核聚变实验装置
- 梭勒克斯流程
- 双核浏览器
- 关键字密度
- 泰安市12345民生服务平台民众诉求事项办理工作考核办法
- 核战总司令
- 捲菸消费税计税价格信息採集和核定管理办法