近一个月一直在学习数据分析课程,因此很久没有更新博客 。我根据自己的学习安排 , 已经完成提交了项目一——对现象用数理统计方法进行假设检验并得出结论 。这次来分析一下链家网公开的部分城市新楼盘数据(2017.07获取的数据),主要对城市楼盘数量、价格进行分析 。
数据读取
为了操作方便 , 我从网上爬取的数据保存为csv格式,因此直接用库的方法可以直接读取并赋值给数据类型的变量 。
data = http://www.kingceram.com/post/pd.read_csv('C:/Users/Nekyo/HJQ/document/pyfile/lianjiaData1.csv')
【二数据分析学习之路——链家网部分城市新开楼盘分析】数据预处理
将爬取的数据我用excel打开,主要信息如下图 。由于数据源的原因,获取的数据比较乱,处理起来需要兼顾很多东西 。例如:建筑面积这一栏,有的是空数据 , 有的是固定一个值,有的是一个范围,有的城市是按照建筑面积算 , 有的城市是按照套内面积算;还有如均价一栏,大多是按照“元/平”来算,部分也按照“万/套”来算,另外也有空数据;地址这一栏数据比较统一,“-”符号将地址分割为城市下面的区县和楼盘具体的地址;居室这一栏由于数据太散乱意义不大 , 没有使用 。因此我主要给出各城市,以及城市下面的区县新楼盘面积和均价的分析情况 。
文章插图
在分析过程中,为了统一我都把建筑面积按照套内面积来算;将特殊数据 , 如空值、价格待定等数据去除 。
data = http://www.kingceram.com/post/data.drop_duplicates(keep='first')#去除重复数据,保留重复数据的第一行数据data = data.reset_index()[['城市','地址','居室','建筑面积','均价']] #由于删去了部分数据 , 重置索引data['居室'] = data['居室'].str.split('-',1)data['建筑面积'] = data['建筑面积'].str.replace('建面','').str.replace('套内','').str.strip().fillna('0') #全部统一为同一单位的面积data['均价'] = data['均价'].str.strip().str.replace('价格待定','').str.strip().fillna('0') #去除均价垃圾数据
数据处理
经过以上步骤,我们将数据稍微规整了一下 , 但是数据格式仍然不统一,因此需要细化处理:1、地址一栏只保留“-”符号前面的区县;2、建筑面积一栏,去除空数据后 , 如果是一个面积范围则取平均值;3、均价一栏由于是两种维度的数据,因此通过正则匹配方式查找并只筛选出单位为“元/平”的数据 。
addr=[]area=[]roomnum=[]price=[]pattern0=re.compile('万/套')pattern=re.compile('(.*?)')#通过正则匹配均价的数值,需引入re库llen = len(data)for i in range(llen):addpos = data['地址'][i].find('-')addr.append(data['地址'][i][:addpos])areapos1 = data['建筑面积'][i].find('~')#"~"所在的位置,如果找不到则返回-1areapos2 = data['建筑面积'][i].find('m')#"m"所在的位置,如果找不到则返回-1if areapos2!=-1:if areapos1!=-1:area1=data['建筑面积'][i][:areapos1]area2=data['建筑面积'][i][areapos1+1:areapos2]areaavg = (float(area1)+float(area2))/2area.append(areaavg)else:area1=data['建筑面积'][i][:areapos2]areaavg=float(area1)area.append(areaavg)else:area.append(0.0) roomnum.append(data['居室'][i][0].strip())prices0 = re.findall(pattern0, data['均价'][i])prices = re.findall(pattern,data['均价'][i])if prices:if prices0:price.append(0.0)# 因为有部分是按照 万/套来计算房价的,因此之后会清理掉else:price.append(float(prices[0]))else:price.append(0.0)
将处理后的数据和原数据框拼接 , 这样就得到了比较统一规整的数据 。
data['区县']=Series(addr)data['房屋面积']=Series(area)data['房间数']=Series(roomnum)data['房价']=Series(price)newdata = http://www.kingceram.com/post/data[data['房价']>0][['城市','区县','房屋面积','房价']] newdata = http://www.kingceram.com/post/newdata[newdata['房屋面积']>0][['城市','区县','房屋面积','房价']]
文章插图
结果如下
文章插图
数据分析过程
先来看看简单的统计描述,只截取了北京大连两个城市的数据供参考 。
newdata.groupby('城市').describe()
文章插图
各城市的新开楼盘信息(平均值),用条形图来展示
newdata.groupby('城市')[['房屋面积','房价']].mean()
文章插图
data1=newdata.groupby('城市')[['房屋面积','房价']].mean()mpl.rcParams["font.sans-serif"] = ["Microsoft YaHei"]mpl.rcParams['axes.unicode_minus'] = Falsefig = plt.figure(figsize=(10,5))# 设置绘图区域大小及子图ax1 = fig.add_subplot(121)ax1.set_xlabel('城市')ax1.set_ylabel('房屋面积(㎡)')ax1.set_title("城市新楼盘平均面积比较")data1['房屋面积'].plot(kind='bar')ax2 = fig.add_subplot(122)ax2.set_xlabel('城市')ax2.set_ylabel('房价(元/平)')ax2.set_title("城市新楼盘平均房价比较")data1['房价'].plot(kind='bar')plt.rcParams['font.sans-serif'] = ['SimHei']# matplotlib画图坐标轴中文字体设置plt.rcParams['axes.unicode_minus'] = False# 用来正常显示负号plt.show()
文章插图
从房价均价图可以看出 , 各城市的房价水平会比真实情况略高 , 这可能是楼盘信息挂在网络平台导致的虚高,但是各城市的分布对比是能够和现实情况对上的 。
下面再从每个城市下辖的区县维度展示云图效果,需要安装使用库 。
toawnavgarea={}#按区县楼盘面积toawnavgprice={}#按区县楼盘均价toawncounts={}#按区县楼盘数量toawn_avg = newdata.groupby('区县').apply(lambda x:x.mean()).reset_index()# 使用匿名函数计算平均值toawn_counts = newdata.groupby('区县')['城市'].apply(lambda x:x.count()).reset_index()for i in range(len(toawn_avg)):toawnavgarea[toawn_avg.ix[i]['区县'].decode('utf-8')] = float(toawn_avg.ix[i]['房屋面积'])toawnavgprice[toawn_avg.ix[i]['区县'].decode('utf-8')] = float(toawn_avg.ix[i]['房价'])for j in range(len(toawn_counts)):toawncounts[toawn_counts.ix[j]['区县'].decode('utf-8')] = float(toawn_counts.ix[j]['城市'])wordcloud=WordCloud(font_path='C:/Users/Nekyo/tools/SOFTWARE/Anaconda2/Library/lib/fonts/songti.ttf', width=1000,height=600,background_color='white')# 云图使用的汉字字体,自带的字体库没有需要下载f=plt.figure(figsize=(10,5))ax1 = f.add_subplot(121)wordcloud.fit_words(toawncounts)axs1=plt.imshow(wordcloud)ax1.set_title("2017年7月区县新楼盘数量云图")plt.axis('off')# 不显示坐标轴ax2 = f.add_subplot(122)wordcloud.fit_words(toawnavgprice)axs2=plt.imshow(wordcloud)ax2.set_title("2017年7月区县新楼盘均价云图")plt.axis('off')plt.show()
文章插图
文章插图
可以看到,成都高新区、大连甘井子区、广州顺德等地新开楼盘数量居前列;平均房价较高的几个地区:东城、西城、朝阳、海淀等 , 都在北京?。≡僮邢缚匆幌挛颐遣呕峥吹轿挥谏钲诘母L铩⒛仙胶吐藓考垡步羲嫫浜螅?由此我们有理由感慨:北京的房价是真高?。。∩钲谝膊徊睿?
最后将数据大幅度调整一下,把每个城市的房价数据拿出来构造一个新的 , 由于每个城市数据量不一样,因此数据量较少的城市在构造过程中会产生空值(NaN表示),不过对分析过程无影响 。
newdata_bj = newdata[['房价','城市']][newdata['城市']=='北京'].reset_index()newdata_cq = newdata[['房价','城市']][newdata['城市']=='重庆'].reset_index()newdata_cd = newdata[['房价','城市']][newdata['城市']=='成都'].reset_index()newdata_sh = newdata[['房价','城市']][newdata['城市']=='上海'].reset_index()newdata_hz = newdata[['房价','城市']][newdata['城市']=='杭州'].reset_index()newdata_gz = newdata[['房价','城市']][newdata['城市']=='广州'].reset_index()newdata_sz = newdata[['房价','城市']][newdata['城市']=='深圳'].reset_index()newdata_dl = newdata[['房价','城市']][newdata['城市']=='大连'].reset_index()newdata_wh = newdata[['房价','城市']][newdata['城市']=='武汉'].reset_index()newdata_xa = newdata[['房价','城市']][newdata['城市']=='西安'].reset_index()newdata_cs = newdata[['房价','城市']][newdata['城市']=='长沙'].reset_index()data_bycity = pd.concat([newdata_bj,newdata_cd,newdata_cq,newdata_hz,newdata_gz,newdata_sz,newdata_dl,newdata_wh,newdata_xa,newdata_cs],axis=1)# concat拼接函数data_bycity = data_bycity.drop(['index','城市'],axis=1)# 去掉索引data_bycity.columns=['北京','成都','重庆','杭州','广州','深圳','大连','武汉','西安','长沙']# 设置列名
新构造的数据集
文章插图
用箱线图对比展示各城市的房价
文章插图
很明显,无论是从中位数还是最大值来看,北京的房价一骑绝尘,深圳紧随其后;再根据四分位距的对比情况,北京深圳也令其它城市难以望其项背,两个城市的房价分布比较分散,会大概率出现某一楼盘开出特别高的房价 , 也会大概率出现某一楼盘开出相对城市均价来说比较低的房价 。
再找一个城市分析其下辖区域的情况,以成都市为例
datacd=newdata[newdata['城市']=='成都']datacd=datacd.groupby('区县')[['房屋面积','房价']].mean()fig = plt.figure(figsize=(10,5))# 设置绘图区域大小及子图ax1 = fig.add_subplot(121)ax1.set_xlabel('成都市各区县')ax1.set_ylabel('房屋面积(㎡)')ax1.set_title("2017年7月成都市各区县新楼盘平均面积比较")datacd['房屋面积'].plot(kind='bar')ax2 = fig.add_subplot(122)ax2.set_xlabel('城市')ax2.set_ylabel('房价(元/平)')ax2.set_title("2017年7月成都市各区县新楼盘平均房价比较")datacd['房价'].plot(kind='bar')plt.show()
文章插图
可以看到,新津、高新西区、天府三个区域新建楼盘面积居前列;房价比较高的区域都在诸如高新、青羊、锦江这样的热门市区,而且均价居然都达到了2w,而像蒲江、仁寿、彭州这样离市区稍远的县连5k都不到 , 跟省内一个地级市房价差不多,放在全国来看,甚至不如一个发达地区的县城的房价 。
总结
由于数据源的因素 , 本次分析可能会与现实情况略有出入,但是大致方向,大致比较分布是没有问题的,也通过这些数据和图形展示对自己感兴趣的城市房价有了一个直观印象 。由于是第一次通过博文展示 , 因此为了加深自己的理解,尽可能的描述了很多细节,显得比较啰嗦 , 之后的分析案例会尽量简洁,不会每个步骤每段代码都进行说明 。
- 菊组词有哪些 菊组词有哪些二年级
- 初二文言文答谢中书书原文及翻译 文言文答谢中书书翻译和原文
- 商铺一拖二是什么意思 商铺什么叫一拖二
- 九价hpv疫苗多少钱 济宁国产二价HPV疫苗多少钱?
- 济宁国产二价宫颈癌疫苗哪里可以打针 济宁国产二价宫颈癌疫苗哪里可以打
- 认识的妻子女二跟谁好了 认识的妻子 女二
- 济宁高价打疫苗 济宁国产二价疫苗要打几针?
- 零基础学习舞蹈怎么办 零基础怎样自学舞蹈
- 重生细胞二细胞怎么打 重生细胞二细胞怎么打?
- 2023年肇庆广宁县城区小学一年级新生报名二维码