题目描述
追逐影子的人,自己就是影子 。——荷马
最近迷上了文学 。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》 。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,想通过一种编码方式使得它变得短一些 。
一部《荷马史诗》中有 n 种不同的单词,从 1 到 n 进行编号 。其中第 i 种单词出现的总次数为 wi 。想要用 k 进制串 si 来替换第 i 种单词,使得其满足如下要求:
对于任意的 1≤i,j≤n,i≠j,都有:si 不是 sj 的前缀
现在想要知道,如何选择 si,才能使替换以后得到的新的《荷马史诗》长度最小 。在确保总长度最小的情况下,还想知道最长的 si 的最短长度是多少?
一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k?1 之间(包括 0 和 k?1)的整数 。
字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 1≤t≤m,使得 Str1=Str2[1..t] 。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串 。
输入描述:
第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n 种单词,需要使用 k 进制字符串进行替换 。接下来 n 行,第 i+1 行包含 1 个非负整数 wi,表示第 i 种单词的出现次数 。
输出描述:
包括 2 行 。第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度 。第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度 。
【[NOI2015]荷马史诗 - Huffman树】示例1
输入
4 21122
输出
122
说明
文章插图
用 X(k) 表示 X 是以 k 进制表示的字符串 。
一种最优方案:令 00(2) 替换第 1 种单词,01(2) 替换第 2 种单词,10(2) 替换第 3 种单词,11(2) 替换第 4 种单词 。在这种方案下,编码以后的最短长度为:
1×2+1×2+2×2+2×2=12
最长字符串 si 的长度为 2 。
一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2) 替换第 3 种单词,1(2) 替换第 4 种单词 。在这种方案下,编码以后的最短长度为:
1×3+1×3+2×2+2×1=12
最长字符串 si 的长度为 3 。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些 。
文章插图
文章插图
#include#include#includeusing namespace std;const int N=1002019;#define int long longint n,k,ans,mxd,tot,val[N],v[N];struct Edge{int to,next;}e[N<<1];void add(int x,int y){e[++tot].to=y; e[tot].next=v[x]; v[x]=tot;}struct node{int id,w,dep;// id :编号, w :权值, dep :子树深度 . node(int a,int b,int c){id=a;w=b;dep=c;};bool operator >(const node &rhs)const{return rhs.w==w?rhs.dep q;void dfs(int x,int d){ // 统计答案 if(x<=n)ans+=val[x]*d,mxd=max(mxd,d);for(int p=v[x];p;p=e[p].next)dfs(e[p].to,d+1);}int read(){int x=0,f=1; char ch=getchar();while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}#undef intint main(){#define int long longn=read(); k=read();for(int i=1;i<=n;i++)q.push(node(i,val[i]=read(),0));while((n-1)%(k-1)!=0)q.push(node(++n,0,0));// 插入若干虚拟结点int id=n,n1=n;while(n1-=k-1,n1>=1){int th=0,mx=0; ++id; // 新建编号为 id 的点 th for(int i=1;i<=k;i++,q.pop()){ // 取出 k 个最优元素node nw=q.top(); th+=nw.w;mx=max(mx,nw.dep); add(id,nw.id);} q.push(node(id,th,mx+1)); // 插入该结点 } dfs(id,0); // 统计答案 printf("%lld\n%lld",ans,mxd);return 0;}
- 俄克拉荷马州
- 《封神第一部》:朝歌风云,神话史诗 中国历史电影之最
- 世界最长史诗《格萨尔王传》最完整版本展出 历史之最史诗格萨尔王
- 《封神第一部》史诗级的好电影,目前为止最完美的好莱坞中国电影 中国之最开场
- 魔兽世界:最强的8大史诗级玩家,你听说过几个? 魔兽世界十大战神
- 从化人文历史诗配画,什么是诗配画
- 格萨尔王:藏族英雄史诗流芳 历史之最史诗格萨尔王
- 比风剑还稀少的史诗武器,回忆魔兽世界五人本经典十大武器 我的世界之最稀有物品大全
- 历史上的5月29日:希拉里和诺盖,首次登顶世界最高峰的勇士 历史之最史诗级决赛
- 萨墓怎么走,魔兽世界史诗萨墓老2怎么卡bug