【图像分类】卷积神经网络之ResNet网络模型实现钢轨缺陷识别(附代码和数据集

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌 。(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊,注意:本数据集订阅需要额外支付10元)
本篇博文,我们将使用深度学习框架搭建实现钢轨缺陷识别,附完整的项目代码和数据集,可以说是全网最详细的手把手教程,初学者可以很好的入门,其他研究者可以加深的理解 。

【图像分类】卷积神经网络之ResNet网络模型实现钢轨缺陷识别(附代码和数据集

文章插图
先看本项目训练的模型的识别效果:
()由微软研究院的 He等四名华人提出,通过使用 Unit成功训练出了152层的神经网络,并在比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比低,效果非常突出 。的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升 。同时的推广性非常好,甚至可以直接用到网络中 。
本文基于深度学习框架搭建,并用于钢轨缺陷识别,是一个很有意义的教程,希望大家可以学会训练图像分类模型的流程以及套路,更深层次的了解网络结构 。
【【图像分类】卷积神经网络之ResNet网络模型实现钢轨缺陷识别(附代码和数据集】图像分类项目实战往期