什么是PCA?
在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看 。在本文中,将会很详细的解答这些问题:PCA、SVD、特征值、奇异值、特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不能用一种直观又容易理解的方式描述出来?
数据降维
为了说明什么是数据的主成分,先从数据降维说起 。数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x',y',z',那么这组数据的表示只用x'和y'两个维度表示即可!当然了,如果想恢复原来的表示方式,那就得把这两个坐标之间的变换矩阵存下来 。这样就能把数据维度降下来了!但是,我们要看到这个过程的本质,如果把这些数据按行或者按列排成一个矩阵,那么这个矩阵的秩就是2!这些数据之间是有相关性的,这些数据构成的过原点的向量的最大线性无关组包含2个向量,这就是为什么一开始就假设平面过原点的原因!那么如果平面不过原点呢?这就是数据中心化的缘故!将坐标原点平移到数据中心,这样原本不相关的数据在这个新坐标系中就有相关性了!有趣的是,三点一定共面,也就是说三维空间中任意三点中心化后都是线性相关的,一般来讲n维空间中的n个点一定能在一个n-1维子空间中分析!所以,不要说数据不相关,那是因为坐标没选对!
上面这个例子里把数据降维后并没有丢弃任何东西,因为这些数据在平面以外的第三个维度的分量都为0 。现在,我假设这些数据在z'轴有一个很小的抖动,那么我们仍然用上述的二维表示这些数据,理由是我认为这两个轴的信息是数据的主成分,而这些信息对于我们的分析已经足够了,z'轴上的抖动很有可能是噪声,也就是说本来这组数据是有相关性的,噪声的引入,导致了数据不完全相关,但是,这些数据在z'轴上的分布与原点构成的夹角非常小,也就是说在z'轴上有很大的相关性,综合这些考虑,就可以认为数据在x',y'轴上的投影构成了数据的主成分!
现在,关于什么是数据的主成分已经很好的回答了 。下面来看一个更具体的例子 。
下面是一些学生的成绩:
文章插图
(转)" />
首先,假设这些科目成绩不相关,也就是说某一科考多少份与其他科没有关系 。那么一眼就能看出来,数学、物理、化学这三门成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数学成绩拉的最开) 。为什么一眼能看出来?因为坐标轴选对了!下面再看一组数据,还能不能一眼看出来:
文章插图
(转)" />
是不是有点凌乱了?你还能看出来数据的主成分吗?显然不能,因为在这坐标系下数据分布很散乱 。所以说,看到事物的表象而看不到其本质,是因为看的角度有问题!如果把这些数据在空间中画出来,也许你一眼就能看出来 。但是,对于高维数据,能想象其分布吗?就算能描述分布,如何精确地找到这些主成分的轴?如何衡量你提取的主成分到底占了整个数据的多少信息?要回答这些问题,需要将上面的分析上升到理论层面 。接下来就是PCA的理论分析 。
- 请教杉木苗的种植方法?
- 美NIST研制出可模拟神经网络的硅光芯片
- 4 [Apple开发者帐户帮助]二、管理你的团队离开一个团队
- 4. 编写测试方法,测试备忘录的保存和恢复功能
- 简单爬虫项目总结_01
- ZIP伪加密与音频拨号隐写 —— 【高校战“疫”】隐藏的信息
- 关于超蛙的介绍 超蛙
- 发肤甲养护片的功效
- 蓝白与纯蓝配出什么样的猫
- 不良人李茂贞怎么死的