文章插图
等化器【等化器】等化器(Equalizer)也叫做均衡器,是通讯系统中是很重要的一部分,由于传送信号在传送路逕到接收器接收的过程中会受到多路径干扰(multipath)、路径中遮蔽物阻挡造成遮蔽效应(shadow effect),这些现象都会造成接收讯号错误率上升 。因此为了降低通讯系统传输的错误率要作通道估测,经由估测的结果对通道回响做补偿进而降低传送错误率 。
基本介绍中文名:等化器
外文名:Equalizer
别名:均衡器
属于:通讯系统
线性等化器基本简介线性等化器(Linear equalizer)zero forcing equalizer在频域(freq. domain)的观点,ZF等化器是个反向滤波器(E(z)=1/F(z)) 在时域,ZF等化器的脉冲回响(impulse response)是脉冲函式(delta function) ZF等化器可以完全消除ISI,但缺点是会造成杂讯放大 均方误差MMSE等化器ZF等化器可以消除完全消除ISI,但过程中会放大杂讯 。MMSE等化器则是在则是使设计估测通道信号及实际信号的均方误差为最小,虽然不能完全消除ISI但不会造成杂讯的放大 。d(n)为实际通道、y0(n)为通道估测结果、eo(n)为两者误差e0(n) = d(n) ? y0(n) = d(n) ? h(n)d(n) = h(n) + eopt(n)由上面结果可知,我们想要得到的结果d(n)可以正交分解成 d(n)=h(n)+eopt(n) 其中h(n)垂直于eopt(n)可适性演算法(for MSE)通讯传输等化器设计,很重要的就是要找出最佳的tap-delay-line filter係数,找出一组可以误差最小的係数 。而在时变(time-invariant)通道中,通道状况随时在改变,所以在设计等化器时便要因应不同的通道状况,随时调整计算出使误差最小的係数,这种演算法变称为adaptive algorithms 。可适性(adaptive)演算法的好坏可由下列几项标準判定:收敛速度:演算法在经过多少次重複运算后可以相当接近最后想要的结果每次重複运算(iteration)的计算量错误调整(misadjustment)的大小LMS演算法LMS演算法通常包含两部分(由以下两者相互运作行程一回授(feedback loop)率波程式(filtering process): 1.计算线系滤波器输出对输入信号的反应2.比较输出信号和想要的信号(desire signal)得到预测误差可适性程式(adaptive process):对于估测误差,自动调整等化器参数 d(n):为想得到的信号 u(n):等化器输入信号 y(n):等化器输出信号 w(n):可时变的tap-delay line filter係数由于LMS演算法不需要事先求得u(n)的自相关函式(ACF)及u(n)和d(n)的交相关函式(CCF),因此在运算上简化许多,也由于w(n)是e(n)及u(n)的 函式(e(n)u(n)是随机程式),所以LMS演算法是一统计滤波器(stochastic filter) 。在设计LMS-based可适性滤波器时,如何决定step-size u使LMS演算法收敛是一项相当重要的议题 当0<u<2/?时,LMS演算法收敛(?_max是u*u的最大特徵值 RLS演算法对每个n值,我们根据W[N]来估计新的最小平方差解,我们在用w(n)来寻找,来表示新的w(n+1)估计值时,希望避免LS演算法全部从头重做的情况,用RLS演算法的好处是我们不用将矩阵反置(inverse),如此一来可以节省运算POWER演算法:1.初始条件:P(0)=δ^(-1)˙I , w(0)=0 ,δ是一大于零很小的常数2.for n=1,2,.... 计算k(n),z(n),w(n)LMS和RLS两者比较:1.LMS 演算法的运算量少,为L 的等级(L为滤波器的长度),但收敛速度受到输入信号的统计特性所影响,需花较多时间达到要求的收敛性能2.RLS 演算法虽然收敛速度快,但却需要巨大的运算量,为L平方的等级 。Decision feedback equalizerDFE有个简单根本的假定:当我们已经正确地侦测到一个bit,我们可以利用由bit获得的知识及对通道回响的了解,进而计算出这个bit所造成的ISI 。换句话说 我们可以决定这个bit后来收到讯号序列所造成的影响,并扣除这个bit对后面接收序列所造成的ISI 。DFE由一个forward filter(转移函式E(z))及一个feedback filter(转移函式D(z)))所组成 。一但接收端RX对接收信号做出决策,其对之后信号所造成的影响(postcursor ISI)可以立刻算出,并且扣除 。DFE使用回授系统,所以有Error propagation的现象MMSE Decision feedback equalizerMMSE DFE的目标是藉由在杂讯放大与残余ISI(residual ISI)间取得平衡,进而使均方误差最小化 。由于DFE杂讯放大的情况和线性等化器不同,所以tap-delay-line等化器的係数也就不同 。由于postcursor ISI不会造成杂讯放大,所以我们把目标放在使杂讯及precursorISI的相加最小Zero Forcing DFE如上面提到ZF等化器消除所有ISI,以致于导致有效通道是纯因果性(purely casual) 。postcursor ISI在回授端会被扣除,其输出杂讯功率如下