回归方程


回归方程

文章插图
回归方程【回归方程】回归方程是根据样本资料通过回归分析所得到的反映一个变数(因变数)对另一个或一组变数(自变数)的回归关係的数学表达式 。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程 。
基本介绍中文名:回归方程
外文名:regression equation
随机变数:和固定变数之间关係的方程
所属类型:数学
原理回归方程(regression equation)是对变数之间统计关係进行定量描述的一种数学表达式 。指具有相关的随机变数和固定变数之间关係的方程 。回归直线方程指在一组具有相关关係的变数的数据(x与y)间,一条最好地反映x与y之间的关係直线 。运算案例若在一组具有相关关係的变数的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关係,即我们要找出一条直线,使这条直线“最贴近”已知的数据点 。因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小 。记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的回归直线方程,相应的直线叫做回归直线,b叫做回归係数 。要确定回归直线方程①,只要确定a与回归係数b 。回归方程的有关量:e.随机变数 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度 。回归直线的求法最小二乘法:总离差不能用n个离差之和来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:由于绝对值使得计算不变,在实际套用中人们更喜欢用:Q=(y1-bx1-a)2+(y2-bx2-a)2+······+(yn-bxn-a)2,这样,问题就归结于:当a,b取什幺值时Q最小,即到点直线y=bx+a的“整体距离”最小 。用最小二乘法求回归直线方程中的a,b有下面的公式:回归方程的写法:spss数据表中有非标準係数一栏,这其实就是回归方程的係数 。对应的变数就是和係数相乘 。如果有常数项,就不用和变数值相乘 。
回归方程

文章插图
最小二乘法求回归直线方程中a、b的公式