本次代码开发调试基于简化版的,相关代码说明见文档:
二次解读的博客-CSDN博客
一、直接使用高仿车牌生成车牌
高仿车牌生成的代码见:+生成较真实的车牌号码图片的博客-CSDN博客
从网上下载了一批真实的质量较高的车牌,每张车牌都有车牌号码的文字信息,如下图所示:
首先,根据上图中的车牌号码生成高仿的车牌,作为训练集的A目录 。
然后,将真实车牌作为训练集的B目录 。
我们将上述训练集通过进行训练,200次迭代后,效果依然不佳 。
效果大致如下:
然后将迭代次数提高到400次,以及增加的个数,效果依然不佳 。
所以提出了疑问:
1、的示例中的图片(比如苹果橘子)是不涉及文字的,那么这种涉及文字的是否可行?
2、自己训练集的图片是矩形的,而代码中会为正方形,这块是否有影响 。
带着这两个疑问,我们重新设计了训练集进行测试 。
二、最简单的带文字的GAN试验
源码中图片最后会被到256*256,所以这次我们直接生成256*256的图片 。
源图片和目标图片样式分别见下面两张图:
生成代码:
#!/usr/bin/env python#coding=utf-8import cv2import osimport numpy as npfrom PIL import ImageDraw, ImageFont, Imagechar_province_list = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁","豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新"]char_alphbet_list = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z"]def generate_license_plate_number():"""随机生成车牌号码:return:"""lp_list = []for province in char_province_list:for _ in range(100):lp_str = provincenumber_list = np.random.choice(char_alphbet_list, 6)lp_str += "".join(number_list)lp_list.append(lp_str)return lp_listdef write_chinese(img, font_type, font_size,color, position, content):# 图像从OpenCV格式转换成PIL格式img_PIL = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))# 字体字体*.ttc的存放路径一般是: /usr/share/fonts/opentype/noto/ 查找指令locate *.ttcfont = ImageFont.truetype(font_type, font_size)# 字体颜色# 文字输出位置# 输出内容draw = ImageDraw.Draw(img_PIL)draw.text(position, content, font=font, fill=color)# 转换回OpenCV格式img_OpenCV = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR)return img_OpenCVdef generate_plate_rectangle(plate_str):"""绘制矩形边框:param plate_str::return:"""width = 256height = 256img = np.ones((height, width, 3), dtype=np.uint8)img *= 255# white backgroundcv2.rectangle(img, (20, 20), (236, 236), (255, 0, 0), 4)img = write_chinese(img, 'font/SimHei.ttf', 42, (0, 0, 0), (50, 100), plate_str)return imgdef generate_plate_filled_rectangle(plate_str):width = 256height = 256img = np.ones((height, width, 3), dtype=np.uint8)img *= 255# white backgroundcv2.rectangle(img, (20, 20), (236, 236), (255, 0, 0), -1)img = write_chinese(img, 'font/SimHei.ttf', 42, (0, 0, 0), (50, 100), plate_str)return imgdef generate_plate_tuple(plate_str, index):dir_path = "D:\\workspace\\ncz-python-algo\\com\\ncz\\algo\\license-plate-generator\\simple_images"path_A = os.path.join(dir_path, "A", str(index) + "_" + plate_str + ".png")path_B = os.path.join(dir_path, "B", str(index) + "_" + plate_str + ".png")img1 = generate_plate_rectangle(plate_str)img2 = generate_plate_filled_rectangle(plate_str)cv2.imencode('.png', img1)[1].tofile(path_A)cv2.imencode('.png', img2)[1].tofile(path_B)# # 生成个别图片# license_plate_str = '浙A5B5T3'# generate_plate_tuple(license_plate_str, 1)# 随机生成一堆图片license_plate_list = generate_license_plate_number()for index, license_plate in enumerate(license_plate_list):print(index + 1, license_plate)generate_plate_tuple(license_plate, index + 1)
- 八 音频——C语言生成正弦波并用 I2S 输出
- 东莞晚上跑滴滴会抓吗,东莞跑滴滴抓吗?
- 函数内传入二级指针, 函数内动态生成二维数组
- python 生成 pptx 分析报告的工具包:reportgen
- AI绘画——了解AI绘画爆火原因与工具,并生成几个端午绘画小作品
- GEE Google Earth Engine——简单快速生成图形chart!
- AI绘画怎么生成
- 不过户可以换车牌号码,车牌号码不过户的话,可不可以换号码
- gpt4可以生成图片吗
- 受到最近扩散模型在高质量的图像以及视频生成方面已经取得了快速