文章插图
【对数正态分布是左偏态还是右偏态 对数正态分布 曹岫云】
从身高分布到马太效应
正态分布无处不在
上一年超模君在高考的前一天,押中了高考作文题 。
文章插图
现在距离紧张又刺激的高考,只剩下2天了 。
文章插图
看样子又到超模君蒙题的时刻,以下内容有可能是考试重点,请做好笔记:
文章插图
某位不愿透露姓名的考生问到超模君,他现在考上清华还有希望吗?
超模君看了看他的近期成绩,Emmm...
文章插图
这位考生近期模拟考的分数分别为580,600,680,620,四次考试的平均值为620分,标准差为37.4,而一个学生的成绩可以近似看做正态分布 。
文章插图
清华大学的分数线是680分,把它在上图标出来:
文章插图
上图阴影的面积为0.03,也就是说考上清华大学的概率为3% 。
所以超模君的建议是:
文章插图
其实除了高考成绩外,我们的生活中还有许多这样的例子,比如:
身高
文章插图
人的IQ分布
文章插图
正态分布的前世今生
正态分布概念是由德国的数学家和天文学家棣莫弗(Moivre)于1733年首次提出,但当时他并没有正态分布更多的应用成果,所以并没有什么名气 。
后来,德国数学家高斯(Gauss)率先将其应用于天文学家研究,这时候正态分布才引起了人们的广泛重视,因此正态分布又叫高斯分布 。
文章插图
左:棣莫弗 右:高斯
到了19世纪,高尔顿和凯特勒把正态分布用在了其他学科上,他们用实际的行动开拓了应用统计学,为数理统计学的产生奠定了基础 。
在他们两人的影响下,正态分布获得了普遍认可和广泛应用(甚至是滥用) 。
文章插图
左:高尔顿 右:凯特勒
那么这么厉害的正态分布到底讲的是什么呢?别急,我们先来看看高尔顿是怎么研究的 。
1877 年,高尔顿设计了一个叫高尔顿钉板的实验,模拟正态分布的性质:
实验视频只需14秒!
高尔顿钉板试验内容:
有一块贴在墙上的木板,木板上有一些水平钉子,它们彼此的距离均相等 。让一些小球从木板上方的入口处自由落体,经过一次次碰撞后,这些小球最终掉落到下方的竖槽中 。
知道了实验内容后,我们来看看高尔顿钉板实验的细节:
弹珠往下滚的时候,撞到钉子就会随机选择往左边走,还是往右边走:
文章插图
这些小球最终的分布位置如下图:
文章插图
像这种左右对称,两头低,中间高的曲线我们称它为正态分布,又因其曲线呈钟形,人们又经常叫它钟形曲线 。
为什么正态分布会如此常见呢?
咳咳,接下来就是今天内容的重点了(敲黑板)!
这个问题可以用中心定理(central limit theorem)来回答:在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布 。
文章插图
中心极限定理提出者——棣莫弗
这个定理可以这么理解:
生活中各种各样的因素就像高尔顿钉板实验中的钉子一样,对我们各个方面产生了大大小小的影响,使得最后的结果分布趋近于正态分布;
但中心定理并不是万能的,他拥有两个很重要的前提:
首先,第一个前提就是取样需要随机 。
这个前提相信大家可以很好地理解,如果我们抽取的人的时候,只抽抽长的高的或者只抽取长得矮的人,那么结果自然不符合正态分布 。
- 地球上的金子是怎么来的 金子是怎么来的
- 微博huq是什么意思
- 唱戏戏子艺名,l;l;红楼梦g;g;里十二官是哪些
- 黑蚂蚁的功效 黑蚂蚁的功效是啥
- 十大直销公司排名,方正科技是十大直销公司吗
- 洋葱倒伏的原因有哪些 洋葱倒伏的原因是什么
- 唱下山的女孩是谁,初X女孩是谁唱的
- 女人气血不足是啥原因造成的 为啥女人气血不足
- 高大霞的火红年全集 高大霞的火红年代大姨是谁
- 光明顶是哪个山 光明顶是啥山