计算机底层知识之处理小数

正则表达式和系统 「推荐阅读指数」 ??????????
?
好了,天不早了,干点正事哇 。
将0.1累加100次也得不到10
我们来一个计算机运算错误的例子 。
function sum(){
let sum = 0;
for(let i=1;i<=100;i++){
sum +=0.1;
}
console.log(sum)
}

我们在浏览器的控制台中,运行sum(),得到的运行结果为9. 。这显然和我们的九年义务教育所教导的「背道而驰」 。
有句话说 , 「雪崩的时候,没有一片雪花是无辜的」 。在这段代码中,程序没错,计算机也没有发生故障,当然和所使用的语言也没有关系(选用其他的高级语言可能运算结果不同) 。如果硬要找一个背锅的,那就是「计算机处理小数的机制」 。
用二进制数表示小数
在计算机底层知识之二进制中我们讲过,由于计算机内部所有的信息都是以二进制数的形式来处理 , 因此,「整数和小数并无差别」 。
在说明计算机如何用二进制数表示小数的具体方法前,我们先尝试将1011.0011这个有小数点的二进制数转换成十进制数 。
小数点「前面」部分的转换方法在计算机底层知识之二进制中介绍过 。只需将各「数位」数值和「位权」相乘,然后再将相乘的结果相加即可实现 。其实,针对小数点后面的部分,也是「照猫画虎」,也是将各「数位」数值和「位权」相乘的结果相加即可 。
二进制数小数转换成十进制数
二进制数小数点前面部分的「位权」
而小数点后面部分的「位权」
?
0次幂前面的位的位权按照1次幂、2次幂····的方式「递增」
0次幂后面的位的位权按照-1次幂、-2次幂····的方式「递减」
?计算机运算出错的原因?
计算机运算出错的原因:「有一些十进制数的小数无法转换成二进制」
?
小数点后4位用二进制数表示时的数值范围为0.0000~0.1111 。这里只能表示0.5、0.24、0.125、0.0625这四个二进制数小数点后面的位权组合而成(相加总和)的小数 。
?
可以看出:「二进制数是连续的 , 十进制数是非连续的」
?
在前面讲二进制的时候,我们说,根据IC引脚个数不同 , 我们可以表示位数不同的二进制数 。我们可以通过增加引脚数,也就是增加二进制小数点后面的位数 , 与其相对应的十进制数的个数也会增加,「但是不管增加多少位,2的-〇〇次幂怎么相加都无法得到0.1这个结果」 。
实际上,十进制数0.1转换成二进制后,会变成0.···(1100循环)这样的「循环小数」 。这和用十进制数来表示1/3是一样的道理 。
?
计算机这个「功能有限」的机器设备,是无法处理「无限循环」的小数的
?
因此,在遇到「循环小数」时,计算机就会根据「变量数据类型」所对应的长度将数值从「中间截断」或者「四舍五入」 。
然后,我们再结合我们上面的例子 , 一个「循环小数」在进行存储的时候,已经被「掐头去尾」,而偏偏针对这个值 , 又进行了N多次处理 。不怕你不努力,就怕你,持之以恒的向偏离既定轨道的方向上移动,那么结果可想而知,是永远不会达到最终想要的结果 。
浮点数
像1011.0011这样带小数点的表现形式,在计算机内部是无法使用的 。
很多编程语言中都提供了两种表示小数的数据类型,分别是「双精度浮点数」和「单精度浮点数」 。
「浮点数」是指用「符号」、「尾数」、「基数」和「指数」这四部分表示的小数 。
?
计算机内部使用的是二进制数,所以「基数是2」,因此,实际的数据中往往不考虑基数 。只用「符号」、「尾数」、「指数」这三部分就可以表示「浮点数」 。
?浮点数表现形式
浮点数的表现方式有很多中,我们采用IEEE标准来解释 。
双精度浮点数和单精度浮点数在表示同一个数值时「使用的位数」不同 。
「符号部分」是指使用一个「数据位」来表示符号 。「数据位是1时表示负 , 为0时表示正或者0」
?
数值的大小用「尾数部分」和「指数部分」来表示 。即用「尾数部分 × 2的指数部分次幂」的形式来表示 。
?正则表达式和系统 尾数部分?
「尾数部分」使用「正则表达式」,可以将表现形式多样的浮点数统一为一种表现形式 。
?
例如,十进制数0.75就有很多表现形式 。
虽然他们表示的都是「同一个数值」,但因为表现方法太多,计算机在处理时会比较麻烦 。
因此,需要制定统一的规则:
?
十进制数的浮点数应该遵循:「小数点前面是0,小数点后面第一位不能是0」
?
也就是说,只能用「尾数」部分是0.75、「指数」部分是0的方法来表示 。即0.75 × 100
?
在二进制数中 , 我们规定:「将小数点前面的值固定为1的正则表达式」
?
具体来讲,就是将二进制数表示的小数「左移」或「右移」(逻辑移位)数次后,「整数部分」的第一位变成1,「第二位之后都变成0」 。
?
而且,「第一位的1在实际的数据中不保存」,因此省略该部分后就可以节省一个数据位,从而可以表示更多的数据范围 。
?
我们,看一下1011.0011如何用单精度浮点数的正则表达式来表示「尾数部分」 。
指数部分
「指数部分」中使用的是系统,使用这种方式主要是「为了表示负数时不使用符号位」 。
在某些情况下,在指数部分,需要通过「负〇〇次幂」的形式来表示负数 。
?
「系统」表现是指,通过将指数部分表示范围的「中间值」设置0,使得负数不需要用符号来表示 。
?
也就是说 , 当「指数部分」是8位单精度浮点数时,最大值=255的1/2,即=127(小数部分舍弃)表示的是0 。
我们再来一个例子说明 。假设有这样一个游戏,用1~13(A~K)的扑克牌来表示负数 。此时 , 我们把「中间」的7当做0 。那么10表示+3,3表示-4 。
单精度浮点数指数部分的系统表现实际运用
我们来一起看看如何用单精度浮点数来表示十进制数0.75 。
0.75转换成二进制正则表示为1.1×2-1,按照前面介绍的就很容易知道下面的各个数值 。
二进制数和十六进制数关系
在以「位」为单位表示数据时 , 使用二进制数很方便,但如果位数太多,看起来很麻烦 。因此,在实际程序中,经常用「十六进制数」来替代「二进制数」 。
在一些高级语言中,只需要在数值的开头加上0x就可以表示十六进制数 。
?
二进制数的4位,正好相当于十六进制数的1位 。
?
由此可见,通过使用十六进制数,二进制数的位数能够「缩短」至原来的1/4 。
用十六进制数表示二进制「小数」时 , 小数点后的二进制数的4位也同样相当于十六进制数的1位 。「不够4位时用0填补二进制的低位」
【计算机底层知识之处理小数】后记