编码器原理 编码器工作原理 编码器原理及图解( 四 )


3.使用环境:粉尘,水气,震动,撞击?
电气部分:
1.连接的输出接收部分是什么?
2.信号形式?
3.分辨率要求?
4.控制要求?
十四、从单圈尽对式编码器到多圈尽对式编码器
旋转单圈尽对式编码器,以转动中丈量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合尽对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的丈量,称为单圈尽对式编码器 。
假如要丈量旋转超过360度范围,就要用到多圈尽对式编码器 。
编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的丈量范围,这样的尽对编码器就称为多圈式尽对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆 。
多圈编码器另一个优点是由于丈量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度 。
多圈式尽对编码器在长度定位方面的上风明显,已经越来越多地应用于工控定位中 。
十五、尽对型编码器的串行和并行输出的具体一点的信息,谢谢!
并行输出:
尽对型编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的尽对编码器,一般就直接以此形式输出数码,可直接进进PLC或上位机的I/O接口,输出即时,连接简单 。但是并行输出有如下题目:
1.必须是格雷码,由于如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码 。
2.所有接口必须确保连接好,由于如有个别连接不良点,该点电位始终是0,造成错码而无法判定 。
3.传输间隔不能远,一般在一两米,对于复杂环境,最好有隔离 。
4.对于位数较多,要很多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有很多节点输出,增加编码器的故障损坏率 。
并行:时间上,数据同时发出;空间上,每个位数的数据各占用一根线缆 。
增量型编码器输出的通常是并行输出 。
串行输出:
串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有rs232、RS422(TTL)、RS485等 。
串行输出连接线少,传输间隔远,对于编码器的保护和可靠性就大大进步了,一般高位数的尽对编码器都是用串行输出的 。
由于尽对型编码器的部分着名厂家在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出,总线型是PROFIBUS-DP的输出等 。
串行输出编码器连接德国西门子的设备是比较轻易的,但是连接非德国系的设备,接口就是题目了,我公司提供各种接口输出的仪表,可以解决这样的题目 。
串行:时间上,数据按照约定,有先后;空间上,所有位数的数据都在一组线缆上(先后)发出 。
十六、串行编码器应该都是尽对式的?
串行是指按时间约定,串行输出数字编码信号,基本是尽对的,但也有一些增量编码器,通过内置电池记忆原点,其也可以通过串行输出位置值,如电池线不联,还是增量编码器,此也称为伪尽对值编码器,在一些日本伺服系统中较多见 。其本质实在还是增量编码器 。
十七、问:为什么叫“尽对型编码器”?
“尽对型编码器”相对于“增量型编码器”而言 。
“尽对型编码器”使用某种方式表示并记忆物体的尽对位置,角度和圈数 。即一旦位置,角度和圈数固定,什么时候编码器的示值都唯一固定,包括停电后投电 。“增量型编码器”做不到这一点 。一般“增量型编码器”输出两个A、B脉冲信号,和一个Z(L)零位信号,A、B脉冲互差90度相位角 。通过脉冲计数可以知道位置,角度和圈数增量,通过A,B脉冲信号超前或滞后可以知道方向,停电后,必须从约定的基准重新开始计数 。“增量型编码器”表示位置,角度和圈数需要做后处理,重新投电要做“复零”操纵,所以,“增量型编码器”比“尽对型编码器”在价格上便宜很多 。
十八、问:光电编码器、光学电子尺和静磁栅尽对编码器的优缺点?
光电编码器:
1.优点:体积小,精密,本身分辨度可以很高(目前我公司通过细分技术在直径φ66的编码器上可达到54000cpr),无接触无磨损;同一品种既可检测角度位移,又可在机械转换装置帮助下检测直线位移;多圈光电尽对编码器可以检测相当长量程的直线位移(如25位多圈) 。寿命长,安装随意,接口形式丰富,价格公道 。成熟技术,多年前已在国内外得到广泛应用 。